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Diffusive persistence and the ‘‘sign-time’’ distribution
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~Received 30 April 1998!

We present a method for extracting the persistence exponentu for the diffusion equation, based on the
distribution P of ‘‘sign times.’’ With the aid of a numerically verified ansatz forP, we derive an analytic
formula for u ~in arbitrary spatial dimensiond) which we conjecture to be the exact result. Our results are in
excellent agreement with previous numerical studies. Furthermore, our results indicate a qualitative change in
P aboved.36, signaling the existence of a sharp change in the ergodic properties of the diffusion field.
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In the past few years there has been much interes
calculating the persistence properties for a wide range
simple model systems. Examples are the diffusion equa
@1#, the Ising model with Glauber dynamics@2# and its Potts
model generalization@3#, interface kinetics@4#, phase order-
ing @5#, and the voter model@6#. Perhaps the simplest an
most generic system is the first–the diffusion equation. N
ively, one might expect that everything is known about su
a classical system. However, one needs only reflect upo
intimate relation to the rich Burgers model of turbulence@7#
~obtained via a simple nonlinear transformation! to appreci-
ate the potential complexity of diffusion physics.

This complexity was again revealed by studies of dif
sive persistence@1#. The persistence exponentu for this case
is defined as follows. Consider the deterministic diffusi
equation evolving a random initial condition~usually created
from an uncorrelated Gaussian distribution!. Then consider
the probabilityq(t) that the diffusion field at a given site ha
never changed sign. One finds numerically that this proba
ity decays with time in a power-law fashion, with an exp
nentu whose value isnot a simple rational number. There
no analytic prediction foru with the exception of the result
from the ‘‘independent interval approximation’’~IIA ! which
are in good agreement with numerical work in spatial dim
sion d51, but fare less well in higher dimensions@1#. It is
easy to find applications for diffusive persistence due to
ubiquitous presence of diffusion physics. Examples inclu
survival of reactants in reaction kinetics, and more gene
survival probabilities in systems with a field slaved to a d
fusion process.

In this paper we shall present an analytic form foru that
we conjecture to be exact. The key to our derivation is t
one may obtainu by studying a more general quantit
namely, the distributionP of ‘‘sign-times’’ t(t) ~to be de-
fined below!, which has also been recently introduced
Dornic and Godre`che@8#. This distribution may be shown to
have an exact scaling form for allt: Pdt5 f (t/t)(dt/t). Nu-
merically, the scaling functionf is found to be extremely
simple. Using this form off as an Ansatz allows an analyt
determination ofu. Our prediction deviates by 3% from th
numerically determined value ind51, but lies well within
the error bars of the simulation results ind52 andd53. We
shall discuss the reasons for the slightd51 discrepancy to-
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ward the end of the paper. We also find that the qualitat
nature ofP goes through a sharp transition atdc.36.

We consider the evolution of a scalar fieldf(r ,t) which
satisfies

] tf5D¹2f, ~1!

with initial condition f(r ,0)5c(r ), where the fieldc is an
uncorrelated random variable described by a Gaussian d
bution

R@c#;expF2~1/2D!E ddrc~r !2G . ~2!

The solution of Eq.~1! has the form

f~r ,t !5E ddr 8g~r2r 8,t !c~r 8!, ~3!

whereg(r ,t)5(4pDt)2d/2exp(2r2/4Dt) is the heat kernel.
The most obvious way to approach the persistence p

lem is to directly calculate the probability that the field at
given site (r50 say! has never changed sign. This amoun
to the evaluation of

q~ t !5K )
t850

t

u„f~0,t8!…L
R

, ~4!

whereu(z) is the Heaviside step function@9#. Apart from the
IIA ~which is difficult to systematically improve!, there does
not seem to be any possibility of calculating this average

Let us now focus our attention on ‘‘sign times’’t(t),
defined as

t~ t !5E
0

t

dt8u„f~0,t8!…, ~5!

so thatt(t)/t is the fraction of timet in which the field at
r50 was positive. Note that this is a much easier object
handle thanq(t), since we do not require the positivity off
for a continuous succession of times. We simply follow t
evolution off and record how often it is positive. Now, th
sign timet(t) is actually a functional of the random variab
c, and as such is described by some probability distribut
R2685 © 1998 The American Physical Society
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P@t,t# ~see also Ref.@8#!. We can immediately list a few
properties ofP. First, it is defined in the domain@0,t#. Sec-
ond, it is symmetric aboutt5t/2 ~since it does not matte
whether we study how oftenf is positive, or how oftenf is
negative!. Third, and most important, the behavior ofP near
t50 or t directly furnishes us with the exponentu. This is
clear, since the probability thatt will be in the vicinity of
either 0 ort is nothing more thanq(t) defined above.

We refer the reader to Appendix A, in which we prove
important fourth property ofP, namely, that it assumes th
scaling formP@t,t#dt5 f (t/t)(dt/t) for any nonzero time
t. ~Note thatP does not depend on the model parametersD
and D.! Given the symmetry ofP about t5t/2, we may
rewrite the scaling form as

P@t,t#dt5g„x~12x!…dx, ~6!

wherex5t/t and we have assumedf to be analytic around
x51/2. The third property listed above imposes thatg(y)
;yu21 for y!1, wherey5x(12x). So we have reduced
the persistence problem to that of calculating the tail of
sign-time distribution. This is still a formidable task, as
involves calculating arbitrarily high moments of the distrib
tion ~see Appendix A!. As an alternative strategy, we mak
an Ansatz, namely, that the small-y form for g actually holds
for all y in the available rangeyP@0,1/2#. This very simple
Ansatz was both suggested and confirmed to us by the re
of our numerical work, which we now briefly describe.~Note
also that this Ansatz appears naturally within the framew
of the IIA @8#.!

Following previous work@1#, we model the diffusion
equation by a discrete space-time process

f i~ t11!5f i~ t !1a(
j

@f j~ t !2f i~ t !#, ~7!

where the sum is over nearest neighbors ofi on a
d-dimensional hypercubic lattice. The parametera is chosen
to be 1/(2d). The initial value of eachf i(0) is drawn from
a Gaussian distribution. Simulations are performed on la
lattices (N;220 sites! for times up tot;210 with several
independent runs. We measure two quantities during
simulation. First, we record the numbern(t) of those sites at
which the field has never changed sign. The ratio ofn/N
;t2u ~due to the self-averaging of the system!. We also
record the sign time for each site and thus construct the
tograms forP@t,t#. Our results for the former quantity are i
agreement with those of Ref.@1#. In Figs. 1 and 2 we show
the histograms ford51 andd52, respectively. The result
are plotted on a log-log scale, since the data and the An
are indistinguishableon a linear scale. One sees that t
scaling functiong indeed varies as a simple power law iny
over the rangeyP@0,1/2#. The only region in which there is
a deviation from this power-law behavior is neary50. This
is purely a ~time!-lattice effect, since the histogram has
finite number of bins given by the number of time steps.
t increases, more and more bins are supplied nearx50
~where the function is integrably singular! and the expected
power-law behavior stretches closer and closer to the ori
We stress that the power-law behavior nearx50 is guaran-
teed by the existence of the persistence exponentu. Our a
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priori knowledge ofg is limited in precisely that region o
x(P@«,1/2#) where the numerical results show a clear sin
power-law behavior. We have added straight lines on
plots, which have slopes ofu21, with values ofu taken
from Eq. ~11! below.

We are now in a position to calculateu. The numerical
results clearly supportP@t,t#5(c/t)@x(12x)#u21. This dis-
tribution contains only two parameters: an amplitudec ~to be
set by normalization! and the exponentu. The latter can, in
principle, be set by the calculation of any even moment oP
~since the odd moments contain no new information, as
odd cumulants are zero!. The simplest to consider is obvi
ously the second momentm2 . ~Unfortunately, it is extremely
difficult to calculate any even moments above the secon!
The integrals overP are simply given in terms of the bet
function @10#. From the normalization one fixes 1/c
5B(u,u). The calculation of the second moment yields

m25
B~u12,u!

B~u,u!
5

~11u!

2~112u!
. ~8!

We may now independently calculatem2 from the origi-
nal definition of the sign times. Explicitly, we have

FIG. 1. A log-log plot of the sign-time distributionP vs y for
d51. The data are taken at timest52n with n56,7,8,9 from top to
bottom. The straight line is a power law with slopeu21,u
50.1253.

FIG. 2. As above, withd52 andu50.1879.
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m25^„t~ t !/t…2&R5E
0

1

da1E
0

1

da2C2~a1t,a2t !, ~9!

whereC25^u„f(0,a1t)…u„f(0,a2t)…&R . This latter quantity
may be calculated exactly to give~see Appendix for a hint!

C25
1

4
1

1

2p
sin21F S 2a1

1/2a2
1/2

~a11a2!
D d/2G . ~10!

The integrals in Eq.~9! are easily performed, leaving on
with the expression

m25
1

4
~22b!⇒u5

b

2~12b!
, ~11!

where

b~d!5
d

2p E
0

1

da
~12a!

~11a! F S 11a

2a1/2D d

21G21/2

. ~12!

This integral may be performed explicitly in one and tw
dimensions, with the results

b~1!5
1

23/2p
@c~11/8!1c~9/8!2c~7/8!2c~5/8!#

58A2/3p2150.20042 . . . , ~13!

and

b~2!5
1

p
@c~5/4!2c~3/4!#

54/p2150.27323 . . . , ~14!

wherec(z) is the digamma function@10#, showing that the
persistence exponent isnot a simple rational number, but i
transcendental. We refer the reader to Table I, where va
of u(d) are listed, along with the numerical and IIA es
mates of Ref.@1#.

It is of interest to calculate the large-d form for u. Then
one finds

u~d!5
p

4I S d

2D 1/2

1O~1!, ~15!

where

I 5E
0

`

dw
@ ln~11w!#1/2

w1/2~11w!
53.0005 . . . , ~16!

TABLE I. The calculated value ofu from Eqs.~11! and ~12!,
along with the IIA and simulation estimates from Ref.@1#.

d u u IIA usim

1 0.1253 . . . 0.1203 . . . 0.1207~5!

2 0.1879 . . . 0.1862 . . . 0.1875~10!

3 0.2390 . . . 0.2358 . . . 0.2380~15!

@1 0.1850 . . .Ad 0.1454 . . .Ad
es

giving a value ofu(d);(0.1850 . . . )Ad. This is to be com-
pared to the result from the IIA, which givesu IIA (d)
;(0.1454...)Ad. As can be seen from this large-d limit, and
also from Table I, the IIA consistently underestimates t
value ofu.

The fact thatu passes through unity is very interesting
it has a direct consequence for the sign-time distributionP.
For u,1,P has integrably divergent tails att(t)→0 and
t(t)→t. Also, the mean of theP ~which is att5t/2) is the
least likely value of t. One can understand this by conside
ing a given point located in the center of a very large posit
domain. A long time must pass before a negative dom
sweeps through, thus halting the sign-time clock. Howev
if u.1, the distribution becomes convex, and the tails go
zero at the end points of the range@0,t#. Thus, the mean
value t5t/2 is in this case themost likely value of t. The
dynamic mixing of positive and negative domains is in th
case very efficient.~We shall return to this point in our con
clusions.! It is therefore important to know at what dimen
sion u passes through unity. This is equivalent to insisti
that b(dc)52/3. Numerical evaluation of the integral in Eq
~12! using MATHEMATICA yields the valuedc535.967 . . . .
The fact that this enormous dimension plays a physical r
in diffusion physics is extraordinary at first sight: such is t
complexity of diffusive persistence.

Before concluding, we wish to make some comments
garding the role of the space-time lattice. It is quite possi
to set up a calculation of the persistence exponent, or
sign-time distribution, with the discrete algorithm~7! as a
starting point. This formulation has the advantage that
direct calculation ofq(t), as defined by Eq.~4!, is well de-
fined. ~In the continuum a microscopic time cutoff must b
introduced to make sense of the time slices.! We have also
pursued the discrete formulation in an attempt to calcu
P@t,t#. As with the continuum case, it is extremely difficu
to calculate any even moment above the second. Howe
we find the interesting result that the second moment c
tains strong corrections to scaling, i.e.,^t(t)2&;t21O(t). In
the continuum, each moment has a clean scaling^t(t)n&
;tn for any nonzero time. The implication of this result,
that one should not expect true scaling from numerical w
@based on Eq.~7!# until very late times. This is especiall
true in low dimensions, where the lattice Laplacian is mu
weaker than its continuum counterpart. This effect is alrea
apparent in the histograms shown in Figs. 1 and 2. One
that the tail~for small y) bends away from its power-law
form due to the discrete sampling on a finite time grid.
more time steps are used, this deviation from scaling
pushed to smaller values ofy. It should be stressed that th
direct measurement of persistence from the ration(t)/N is
less reliable since the measurement is equivalent to samp
P at y50—precisely in the region most affected by fini
time-step effects. It is for these reasons that we believe
d51 measurement ofu, as given in Ref.@1#, to be the least
solid. In principle, one can avoid these finite time-grid e
fects by sampling data from the exact solution of the dif
sion equation, as given in Eq.~3!, wheret is a real, continu-
ous quantity. Such a numerical study would require orders
magnitude more computer time than the previous studies,
could potentially give a definitive answer for the cased
51.
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In conclusion, we have conjectured an exact form for
diffusive persistence exponentu, with the aid of an Ansatz
based on numerical observations of the sign-time distribu
P. Naturally, this result is in no way rigorous. We conside
proof of our conjecture to be a reachable goal, although s
a proof involves very technical manipulations
n-dimensional geometry@11,12#. We have also demonstrate
the wider significance of the persistence exponent in par
etrizing the sign-time distribution. We believe that this d
tribution will become an important new tool in othe
persistence-type problems. The tails of the distribution c
tain standard persistence information, while the body oP
gives important information regarding the mixing efficien
of the problem at hand. IfP is concave~convex!, then the
mean value is the least~most! likely. Such information is
important when ergodic properties of a system are under
vestigation. The fact that the curvature ofP for the simple
diffusion equation ‘‘flips’’ at d5dc.36 indicates that the
dynamics in the phase space of few-body systems may
extremely sensitive to exactly how many degrees of freed
are considered.

The authors are grateful to A. Bray, E. Ben-Naim,
Godrèche, and R. Zia for interesting discussions, and a
thank C. Godre`che for bringing Ref.@8# to their attention
prior to publication. T.J.N. and Z.T. acknowledge financ
support from the Materials Research Division of the Natio
Science Foundation. Z.T. also acknowledges support f
the Hungarian Science Foundation under Grant Nos. T17
and T19483.
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APPENDIX

In this appendix we sketch a brief proof of the assert
that P satisfies the exact scaling formP@t,t#dt5 f (t/
t)(dt/t) for all t. First, we note that the sign-time distribu
tion can be written asP@t,t#5^d(t2tc)&R , wheretc is the
implicit function of c given in Eq.~5!. Thus,

P@t,t#5E
2`

` dv

2p
eivt^exp~2 ivtc!&R . ~A1!

The average on the rhs of the above expression may be
expressed as a power series in terms ofvn^tc

n&R . The nth

moment is ann-fold integral over the average ofn step func-
tions. Each step function may be represented by an integ
yielding ~with an implicit limit of ek→0)

^tc
n&5

1

~2p!n )
j 51

n E
0

t

dtkE
2`

` dsk

~ek1 isk!
^ei ( ls lf~0,t l !&R .

The average is easily performed over the Gaussian distr
tion R@c#. On rescaling the integration variables we find

^tc
n&5S t

2p D n

)
k51

n E
0

1

dakE
2`

` dsk8

~ek81 isk8!
@e2( l ,ms l8Ml ,msm8 #,

where Ml ,m5@2al
1/2am

1/2/(al1am)#d/2. We see that thenth

moment scales exactly astn, which enables us to combinev
andt as a simple product. Returning to~A1!, we may scalev
by t to obtain the desired result.
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@11# L. Schläfli, Quart. J. Pure Appl. Math.2, 269 ~1858!; 3, 54
~1860!; 3, 97 ~1860!; H. S. M. Coxeter,Regular Polytopes,
2nd ed.~MacMillan, New York, 1963!.

@12# Z. Toroczkai and T. J. Newman~unpublished!.


