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Diffusive persistence and the “sign-time” distribution
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We present a method for extracting the persistence expahémt the diffusion equation, based on the
distribution P of “sign times.” With the aid of a numerically verified ansatz f&, we derive an analytic
formula for @ (in arbitrary spatial dimensiod) which we conjecture to be the exact result. Our results are in
excellent agreement with previous numerical studies. Furthermore, our results indicate a qualitative change in
P aboved=36, signaling the existence of a sharp change in the ergodic properties of the diffusion field.
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PACS numbsgs): 05.40:+j, 82.20—~w

In the past few years there has been much interest imard the end of the paper. We also find that the qualitative
calculating the persistence properties for a wide range ofature ofP goes through a sharp transitiondy=36.
simple model systems. Examples are the diffusion equation We consider the evolution of a scalar figfqr,t) which
[1], the Ising model with Glauber dynamifg] and its Potts ~ satisfies
model generalizatiof3], interface kinetic§4], phase order-
ing [5], and the voter moddl6]. Perhaps the simplest and

most generic system is the first—the diffusion equation. NaWith initial condition ¢(r,0)= ¢(r), where the fieldy is an

ively, one might expect that everything is known about such, - rejated random variable described by a Gaussian distri-
tion

9p=DV?¢, @

a classical system. However, one needs only reflect upon i
intimate relation to the rich Burgers model of turbulen@é
(obtained via a simple nonlinear transformajioo appreci-
ate the potential complexity of diffusion physics. R[ 'ﬂ]”eXF{ _(1/2A)f ddr‘/’(r)z}- @)

This complexity was again revealed by studies of diffu-
sive persistencEl]. The persistence exponefifor this case  The solution of Eq(1) has the form
is defined as follows. Consider the deterministic diffusion
equation evolving a random initial conditignsually created :f Aot y(p—pt /
from an uncorrelated Gaussian distribuliohen consider ¢ drg(r=ri,Hy(r), &
the probabilityq(t) that the diffusion field at a given site has
never changed sign. One finds numerically that this probabil\-N
ity decays with time in a power-law fashion, with an expo-
nent# whose value isiot a simple rational number. There is
no analytic prediction fo® with the exception of the results
from the “independent interval approximation(TlA ) which
are in good agreement with numerical work in spatial dimen- t

a(t) =< > :
R

hereg(r,t)=(47Dt)~ ¥%exp(-r?/4Dt) is the heat kernel.
The most obvious way to approach the persistence prob-
lem is to directly calculate the probability that the field at a
given site (=0 say has never changed sign. This amounts
to the evaluation of

siond=1, but fare less well in higher dimensiofi|. It is IT ace0,t))

easy to find applications for diffusive persistence due to the t'=0

ubiquitous presence of diffusion physics. Examples include:

survival of reactants in reaction kinetics, and more generalvhered(z) is the Heaviside step functid@]. Apart from the

survival probabilities in systems with a field slaved to a dif- IIA (which is difficult to systematically improyethere does

fusion process. not seem to be any possibility of calculating this average.
In this paper we shall present an analytic form fothat Let us now focus our attention on ‘“sign times#(t),

we conjecture to be exact. The key to our derivation is thatlefined as

one may obtaind by studying a more general quantity, t

namely, the distributiorP of “sign-times” 7(t) (to be de- _ / /

fined below, which has also been recently introduced by T(t)_Jodt 0(4(0.1), ®

Dornic and Godrehe[8]. This distribution may be shown to

have an exact scaling form for @allPdr=f(#/t)(d7/t). Nu-  so thatr(t)/t is the fraction of timet in which the field at

merically, the scaling functiorf is found to be extremely r=0 was positive. Note that this is a much easier object to

simple. Using this form of as an Ansatz allows an analytic handle tharg(t), since we do not require the positivity gf

determination off. Our prediction deviates by 3% from the for a continuous succession of times. We simply follow the

numerically determined value id=1, but lies well within  evolution of ¢ and record how often it is positive. Now, the

the error bars of the simulation resultsde-2 andd=3. We  sign time7(t) is actually a functional of the random variable

shall discuss the reasons for the slight 1 discrepancy to- ¢, and as such is described by some probability distribution
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P[7,t] (see also Ref[8]). We can immediately list a few P — T
properties ofP. First, it is defined in the domai0,t]. Sec- I
ond, it is symmetric about=t/2 (since it does not matter
whether we study how ofte is positive, or how oftenp is

negative. Third, and most important, the behavior®fnear

7=0 ort directly furnishes us with the exponeét This is

clear, since the probability that will be in the vicinity of e
either 0 ort is nothing more tham(t) defined above.

We refer the reader to Appendix A, in which we prove an
important fourth property oP, namely, that it assumes the 0.001
scaling formP[ 7,t]d7=f(7/t)(d7/t) for any nonzero time
t. (Note thatP does not depend on the model paramelers
and A.) Given the symmetry o about r=t/2, we may
rewrite the scaling form as

0.01

0.01 0.1

P[7,t]Jdr=g(x(1—x))dx, (6) FIG. 1. A log-log plot of the sign-time distributioR vsy for
] d=1. The data are taken at times 2" with n=6,7,8,9 from top to
wherex= 7/t and we have assumddto be analytic around pottom. The straight line is a power law with slope-1,6

x=1/2. The third property listed above imposes tgay) =0.1253.

~y?"1 for y<1, wherey=x(1—x). So we have reduced

the persistence problem to that of calculating the tail of theyriori knowledge ofg is limited in precisely that region of
Slgn-tlme distribution. This is still a formidable ta.Sk, as It X( e [8,1/2]) where the numerical results show a clear Sing|e
involves calculating arbitrarily high moments of the distribu- power-law behavior. We have added straight lines on the
tion (see Appendix A As an alternative strategy, we make piots, which have slopes of—1, with values ofé taken

an Ansatz, namely, that the smalform for g actually holds  frgm Eq. (11) below.

for all y in the available rangg e[0,1/2]. This very simple We are now in a position to calcula#® The numerical
Ansatz was both suggested and confirmed to us by the resuligsuits clearly suppoR[ 7,t]= (c/t)[x(1—x)]1?" L. This dis-
of our numerical work, which we now briefly descrilidlote  tribution contains only two parameters: an amplitedéo be

of the ”A, (8l) i o principle, be set by the calculation of any even momer of
Following previous work[1], we model the diffusion (sjnce the odd moments contain no new information, as the
equation by a discrete space-time process odd cumulants are zexoThe simplest to consider is obvi-
ously the second momept,. (Unfortunately, it is extremely
¢i(t+1)=¢i(t)+a; [os(1)— i(D)], (7)  difficult to calculate any even moments above the segond.

The integrals oveP are simply given in terms of the beta
function [10]. From the normalization one fixes cl/

where the sum is over nearest neighbors iofon a  =B(6,6). The calculation of the second moment yields
d-dimensional hypercubic lattice. The parametés chosen

to be 1/(2). The initial value of each;(0) is drawn from B(6+2,0) (1+6)

a Gaussian distribution. Simulations are performed on large Moo= = (8

lattices (N~ 22 siteg for times up tot~2'° with several B(6,6)  2(1+26)

independent runs. We measure two quantities during the ] o
simulation. First, we record the numbe(t) of those sites at e may now independently calculaie, from the origi-
which the field has never changed sign. The rationt nal definition of the sign times. Explicitly, we have
~t~% (due to the self-averaging of the systeriVe also
record the sign time for each site and thus construct the his-
tograms forP[ 7,t]. Our results for the former quantity are in
agreement with those of RdfL]. In Figs. 1 and 2 we show
the histograms fod=1 andd=2, respectively. The results 0.01 ¢
are plotted on a log-log scale, since the data and the Ansatz

are indistinguishableon a linear scale. One sees that the
scaling functiong indeed varies as a simple power lawyin o
over the range €[ 0,1/2]. The only region in which there is

a deviation from this power-law behavior is near 0. This

is purely a(time)-lattice effect, since the histogram has a 0.001
finite number of bins given by the number of time steps. As .
t increases, more and more bins are supplied nead [
(where the function is integrably singuleand the expected . — |
power-law behavior stretches closer and closer to the origin. 0.01 0.1

We stress that the power-law behavior nearO is guaran-

teed by the existence of the persistence expoder@ur a FIG. 2. As above, wittd=2 and #=0.1879.
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TABLE I. The calculated value ob from Egs.(11) and (12,  giving a value ofg(d)~(0.189 . . .)yd. This is to be com-
along with the IIA and simulation estimates from REf]. pared to the result from the IIA, which gives(d)
~(0.1454..)\/d. As can be seen from this largklimit, and

d o Ona Osim also from Table |, the IIA consistently underestimates the
1 0.123... 0.12@8. .. 0.12075) value of . o _ :
2 018D . .. 0.188 . . 0.187510) The fact thatd passes through unity is very interesting as
3 023D 0238 0.238015) it has a direct consequence for the sign-time distribuion
o1 0189 ...d 0.145 .. \d For 6<1,P has integrably divergent tails at(t)—0 and

7(t)—t. Also, the mean of th® (which is at7=t/2) is the
leastlikely value of 7. One can understand this by consider-
1 1 ing a given point located in the center of a very large positive
,LL2=<(T(I)/I)2>R=f dalf da,Cy(ajt,ast), (9  domain. A long time must pass before a negative domain
0 0 sweeps through, thus halting the sign-time clock. However,
if 6>1, the distribution becomes convex, and the tails go to
zero at the end points of the ran@@t]. Thus, the mean
value 7=1/2 is in this case thenostlikely value of . The
dynamic mixing of positive and negative domains is in this

whereC,=(0(¢(0,a,t))8(4(0,a,t)))r . This latter quantity
may be calculated exactly to gi¥eee Appendix for a hint

1/2,1/2\ d/2
szl + L sin~1 2al—a2 (10  case very efficientWe shall return to this point in our con-
4 2w (a;t+ay) clusions) It is therefore important to know at what dimen-

] ) ) ) sion @ passes through unity. This is equivalent to insisting
The integrals in Eq(9) are easily performed, leaving one tnat g(d.) = 2/3. Numerical evaluation of the integral in Eq.
with the expression (12) using MATHEMATICA yields the valued,=35.967 . . ..
The fact that this enormous dimension plays a physical role
#223(2_/3):9: B (12) in diffusion physics is extraordinary at first sight: such is the
4 2(1-p)’ complexity of diffusive persistence.

Before concluding, we wish to make some comments re-
where garding the role of the space-time lattice. It is quite possible
to set up a calculation of the persistence exponent, or the

d (1 (1-a) sign-time distribution, with the discrete algorith(d) as a
p(d)= 7 J da —— . . ) .
7)o (l+a) starting point. This formulation has the advantage that the
direct calculation ofy(t), as defined by Eq4), is well de-
This integra| may be performed exp“cmy in one and two fined. (ln the continuum a minOSCOpiC time cutoff must be
dimensions, with the results introduced to make sense of the time slit&4e have also
pursued the discrete formulation in an attempt to calculate

1+a

2a1/2

d 1/2
—1] . (12

1 P[ 7,t]. As with the continuum case, it is extremely difficult
B(L)= Sar [ (11/8)+ y(9/8) — y(7/8) — (5/8)] to calculate any even moment above the second. However,
we find the interesting result that the second moment con-
=8.2/37—1=0.2002 . . ., (13)  tains strong corrections to scaling, i€z(t)?)~t2+O(t). In
the continuum, each moment has a clean sca{ing)")
and ~t" for any nonzero time. The implication of this result, is

that one should not expect true scaling from numerical work

1 [based on Eq(7)] until very late times. This is especially
B(2)= L (5/4) = y(3/4)] true in low dimensions, where the lattice Laplacian is much
weaker than its continuum counterpart. This effect is already
=4lm—1=0.2733. . ., (14) apparent in the histograms shown in Figs. 1 and 2. One sees

) i , i that the tail(for small y) bends away from its power-law
where (2) is the digamma functiof10], showing that the (o gue to the discrete sampling on a finite time grid. As

persistence exponent i®t a simple rational number, butis o time steps are used, this deviation from scaling is

transcendentgl. We refer thg reader to Ta}ble I, where Val,ue[ilshed to smaller values gf It should be stressed that the

of 6(d) are listed, along with the numerical and IlA esti- direct measurement of persistence from the ra(iy/N is

mates of Ref[l]. less reliable since the measurement is equivalent to sampling
It is of interest to calculate the largeform for 6. Then  p 4 y=0—precisely in the region most affected by finite

one finds time-step effects. It is for these reasons that we believe the
2 d=1 measurement of, as given in Ref[1], to be the least
0(d)= — (_) +0(1), (15  solid. In principle, one can avoid these finite time-grid ef-
4l \2 fects by sampling data from the exact solution of the diffu-
where sion equation, as given in E(), wheret is a real, continu-

ous quantity. Such a numerical study would require orders of
©  [In(14w)]2 magnitude more computer time than the previous studies, but
f dw—————==3.006. .., (16)  could potentially give a definitive answer for the cade

0 wY2(1+w) =1.
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In conclusion, we have conjectured an exact form for the APPENDIX
diffusive persistence exponeft with the aid of an Ansatz . . . .
based on numerical observations of the sign-time distribution In this appendix we sketch a brief proof of the assertion

: g . : that P satisfies the exact scaling forR[ r,t]dr=f(7/
P. Naturally, th|§ result is in no way rigorous. We consider a (d/t) for all t. First, we note that the sign-time distribu-
proof of our conjecture to be a reachable goal, although sucI N can b writt. n @i t]=(8(7—7,))r, Wher is th
a proof involves very technical manipulations in irg Ii((;:?t fur?ctioneof a i\ql-,enTn< E(T(S;-w?I'hRu’s erer, 1sthe
n-dimensional geometriyl1,12. We have also demonstrated P Vg q.5). ’
the wider significance of the persistence exponent in param- « do .
etrizing the sign-time distribution. We believe that this dis- P[T,t]:f = e (exp —iwTy))R. (A1)
tribution will become an important new tool in other —e £
pgr&stence—type p_roblems._ The tal_Is of thg distribution CONThe average on the rhs of the above expression may be re-
tain st_andartd [r;gr?|sten?_e mform?jt]on,tr\]/vhllg the b?fq)Pof expressed as a power series in term&»&{r']p)R. The n®
gives important information regarding the mixing €thclency ., ot is am-fold integral over the average aofstep func-

of the problem at hand. IP is concave(convey, then the .. ; .
. ) ) ..~ tions. Each step function may be represented by an integral,
mean value is the leagmos) likely. Such information is n)_/ielding (with an implicit limit of €,—0)

important when ergodic properties of a system are under i
vestigation. The fact that the curvature Bffor the simple 1 N o doy ‘
diffusion equation “flips” atd=d.=36 indicates that the  (7)=—-— H f dtkf ————— (Bt
dynamics in the phase space of few-body systems may be (2m)" j=1 Jo = (ectioy)

extremely sensitive to exactly how many degrees of freedo

! Mhe average is easily performed over the Gaussian distribu-
are considered.

tion R[ ]. On rescaling the integration variables we find
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